Time-dependent Jahn-Teller problem: phonon-induced relaxation through conical intersection

J Chem Phys. 2014 Dec 21;141(23):234113. doi: 10.1063/1.4903814.

Abstract

A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.