Finite-size scaling as a way to probe near-criticality in natural swarms

Phys Rev Lett. 2014 Dec 5;113(23):238102. doi: 10.1103/PhysRevLett.113.238102. Epub 2014 Dec 1.

Abstract

Collective behavior in biological systems is often accompanied by strong correlations. The question has therefore arisen of whether correlation is amplified by the vicinity to some critical point in the parameters space. Biological systems, though, are typically quite far from the thermodynamic limit, so that the value of the control parameter at which correlation and susceptibility peak depend on size. Hence, a system would need to readjust its control parameter according to its size in order to be maximally correlated. This readjustment, though, has never been observed experimentally. By gathering three-dimensional data on swarms of midges in the field we find that swarms tune their control parameter and size so as to maintain a scaling behavior of the correlation function. As a consequence, correlation length and susceptibility scale with the system's size and swarms exhibit a near-maximal degree of correlation at all sizes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal*
  • Chironomidae
  • Data Interpretation, Statistical
  • Models, Biological*
  • Thermodynamics