Probing the axis alignment of an ultracold spin-polarized Rb(2) molecule

Phys Rev Lett. 2014 Dec 5;113(23):233004. doi: 10.1103/PhysRevLett.113.233004. Epub 2014 Dec 3.

Abstract

We present a novel method for probing the alignment of the molecular axis of an ultracold, nonpolar dimer. These results are obtained using diatomic ^{87}Rb_{2} molecules in the vibrational ground state of the lowest triplet potential a^{3}Σ_{u}^{+} trapped in a 3D optical lattice. We measure the molecular polarizabilities, which are directly linked to the alignment, along each of the x, y, and z directions of the lab coordinate system. By preparing the molecules in various, precisely defined rotational quantum states we can control the degree of alignment of the molecular axis with high precision over a large range. Furthermore, we derive the dynamical polarizabilities for a laser wavelength of 1064.5 nm parallel and orthogonal to the molecular axis of the dimer, α_{∥}=(8.9±0.9)×10^{3} a.u. and α_{⊥}=(0.9±0.4)×10^{3} a.u., respectively. Our findings highlight that the depth of an optical lattice strongly depends on the rotational state of the molecule, which has to be considered in collision experiments. The present work paves the way for reaction studies between aligned molecules in the ultracold temperature regime.