Orientation of B798 BChl a Q y transition dipoles in Chloroflexus aurantiacus chlorosomes: polarized transient absorption spectroscopy studies

Photosynth Res. 2015 Aug;125(1-2):31-42. doi: 10.1007/s11120-014-0060-2. Epub 2014 Dec 17.

Abstract

Isotropic and anisotropic pump-probe spectra of Cfx. aurantiacus chlorosomes were measured on the fs-through ps-time scales for the B798 BChl a Q y band upon direct excitation of the B798 band at T = 293 K and T = 90 K. Upon direct excitation of the B798 band, the anisotropy parameter value r(λ) was constant within the whole BChl a Q y band at any delay time at both temperatures. The value of the anisotropy parameter r decayed from r = 0.4 at both temperatures (at 200 fs delay time after excitation) to the steady-state values r = 0.1 at T = 293 K and to r = 0.09 at T = 90 K (at 30 ÷ 100 ps delay time after excitation). The results were considered within the framework of the model of uniaxial orientation distribution of BChl-a transition dipoles within a single Cfx. aurantiacus chlorosome. This implies that the B798 BChl a Q y transition dipoles, randomly distributed around the normal to the baseplate plane, form the angle θ with the plane. For this model, the theoretical dependence of the steady-state anisotropy parameter r on the angle θ was derived. According to the theoretical dependence r(θ), the angle θ corresponding to the experimental steady-state value r = 0.1 at T = 293 K was found to equal 55°. As the temperature drops to 90 K, the angle θ decreases to 54°.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Chloroflexus / metabolism*
  • Fluorescence Polarization
  • Organelles / metabolism*
  • Spectrometry, Fluorescence

Substances

  • Bacterial Proteins
  • bacteriochlorophyll A proteins, Bacteria