Large displacement vertical translational actuator based on piezoelectric thin films

J Micromech Microeng. 2010 Jul;20(7):075016. doi: 10.1088/0960-1317/20/7/075016.

Abstract

A novel vertical translational microactuator based on thin-film piezoelectric actuation is presented, using a set of four compound bend-up/bend-down unimorphs to produce translational motion of a moving platform or stage. The actuation material is a chemical-solution deposited lead-zirconate-titanate (PZT) thin film. Prototype designs have shown as much as 120 μm of static displacement, with 80-90 μm displacements being typical, using four 920 μm long by 70 μm legs. Analytical models are presented that accurately describe nonlinear behavior in both static and dynamic operation of prototype stages when the dependence of piezoelectric coefficients on voltage is known. Resonance of the system is observed at a frequency of 200 Hz. The large displacement and high bandwidth of the actuators at low-voltage and low-power levels should make them useful to a variety of optical applications, including endoscopic microscopy.