Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales

Oecologia. 2015 Feb;177(2):545-59. doi: 10.1007/s00442-014-3178-1. Epub 2014 Dec 14.

Abstract

Trade-offs among functional traits produce multi-trait strategies that shape species' interactions with the environment and drive the assembly of local communities from regional species pools. Stream fish communities vary along stream size gradients and among hierarchically structured habitat patches, but little is known about how the dispersion of strategies varies along environmental gradients and across spatial scales. We used null models to quantify the dispersion of reproductive life history, feeding, and locomotion strategies in communities sampled at three spatial scales in a prairie stream network in Kansas, USA. Strategies were generally underdispersed at all spatial scales, corroborating the longstanding notion of abiotic filtering in stream fish communities. We tested for variation in strategy dispersion along a gradient of stream size and between headwater streams draining different ecoregions. Reproductive life history strategies became increasingly underdispersed moving from downstream to upstream, suggesting that abiotic filtering is stronger in headwaters. This pattern was stronger among reaches compared to mesohabitats, supporting the premise that differences in hydrologic regime among reaches filter reproductive life history strategies. Feeding strategies became increasingly underdispersed moving from upstream to downstream, indicating that environmental filters associated with stream size affect the dispersion of feeding and reproductive life history in opposing ways. Weak differences in strategy dispersion were detected between ecoregions, suggesting that different abiotic filters or strategies drive community differences between ecoregions. Given the pervasiveness of multi-trait strategies in plant and animal communities, we conclude that the assessment of strategy dispersion offers a comprehensive approach for elucidating mechanisms of community assembly.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Distribution
  • Animals
  • Environment*
  • Feeding Behavior
  • Fishes / physiology*
  • Kansas
  • Models, Theoretical
  • Reproduction
  • Rivers
  • Swimming
  • Water Movements