Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone

Med Eng Phys. 2015 Jan;37(1):109-20. doi: 10.1016/j.medengphy.2014.11.005. Epub 2014 Dec 8.

Abstract

Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral cancellous bone. Forty vertebrae (T6, T8, T11, and L3) from 10 cadavers (63-90 years) were scanned using microCT and DTS. Anisotropy (μCT.DA), and the specimen-average and standard deviation of trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp) were obtained using stereology. Apparent modulus (EFEM), and the magnitude (VMExp/σapp) and variability (VMCV) of trabecular stresses were calculated using microCT-based finite element modeling. Mean intercept length, line fraction deviation and fractal parameters were obtained from coronal DTS slices, then correlated with stereological and finite element parameters using linear regression models. Twenty-one DTS parameters (out of 27) correlated to BV/TV, Tb.Th, Tb.N, Tb.Sp and/or μCT.DA (p<0.0001-p<0.05). DTS parameters increased the explained variability in EFEM and VMCV (by 9-11% and 13-19%, respectively; p<0.0001-p<0.04) over that explained by BV/TV. In conclusion, DTS has potential for quantitative assessment of cancellous bone and may be used as a modality complementary to those measuring bone mass for assessing spinal fracture risk.

Keywords: Bone biomechanics; Digital tomosynthesis; Finite element analysis; Fractal dimension; Heterogeneity; Lacunarity; Line fraction deviation; Microcomputed tomography; Spine; Stress distribution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Anisotropy
  • Elasticity
  • Female
  • Finite Element Analysis
  • Fractals
  • Humans
  • Linear Models
  • Male
  • Organ Size
  • Radiography
  • Spine / anatomy & histology
  • Spine / diagnostic imaging*
  • Spine / physiology
  • Stress, Mechanical
  • Tomography / methods*