Information criteria and selection of vibration models

J Acoust Soc Am. 2014 Dec;136(6):3040. doi: 10.1121/1.4900562.

Abstract

This paper presents a method of determining an appropriate equation of motion of two-dimensional plane structures like membranes and plates from vibration response measurements. The local steady-state vibration field is used as input for the inverse problem that approximately determines the dispersion curve of the structure. This dispersion curve is then statistically treated with Akaike information criterion (AIC), which compares the experimentally measured curve to several candidate models (equations of motion). The model with the lowest AIC value is then chosen, and the utility of other models can also be assessed. This method is applied to three experimental case studies: A red cedar wood plate for musical instruments, a thick paper subjected to unknown membrane tension, and a thick composite sandwich panel. These three cases give three different situations of a model selection.