Enhancing shelf life of minimally processed multiplier onion using silicone membrane

J Food Sci Technol. 2014 Dec;51(12):3963-9. doi: 10.1007/s13197-012-0898-2. Epub 2012 Nov 27.

Abstract

The aim of storage of minimal processed product is to increase the shelf life and thereby extend the period of availability of minimally processed produce. The silicone membrane makes use of the ability of polymer to permit selective passage of gases at different rates according to their physical and chemical properties. Here, the product stored maintains its own atmosphere by the combined effects of respiration process of the commodity and the diffusion rate through the membrane. A study was undertaken to enhance the shelf life of minimally processed multiplier onion with silicone membrane. The respiration activity was recorded at a temperature of 30 ± 2 °C (RH = 60 %) and 5 ± 1 °C (RH = 90 %). The respiration was found to be 23.4, 15.6, 10 mg CO2kg(-1)h(-1) at 5 ± 1 °C and 140, 110, 60 mg CO2kg(-1) h(-1) at 30 ± 2° for the peeled, sliced and diced multiplier onion, respectively. The respiration rate for the fresh multiplier onion was recorded to be 5, 10 mg CO2kg(-1) h(-1) at 5 ± 1 °C and 30 ± 1 ° C, respectively. Based on the shelf life studies and on the sensory evaluation, it was found that only the peeled multiplier onion could be stored. The sliced and diced multiplier onion did not have the required shelf life. The shelf life of the multiplier onion in the peel form could be increased from 4-5 days to 14 days by using the combined effect of silicone membrane (6 cm(2)/kg) and low temperature (5 ± 1 °C).

Keywords: Controlled atmosphere; Low temperature; Modified atmosphere; Multiplier onion; Shelf- life; Silicone membrane.