Analysis of spike waves in epilepsy using Hilbert-Huang transform

J Med Syst. 2015 Jan;39(1):170. doi: 10.1007/s10916-014-0170-6. Epub 2014 Dec 4.

Abstract

In this paper, we used the Hilbert-Huang transform (HHT) analysis method to examine the time-frequency characteristics of spike waves for detecting epilepsy symptoms. We obtained a sample of spike waves and nonspike waves for HHT decomposition by using numerous intrinsic mode functions (IMFs) of the Hilbert transform (HT) to determine the instantaneous, marginal, and Hilbert energy spectra. The Pearson correlation coefficients of the IMFs, and energy-IMF distributions for the electroencephalogram (EEG) signal without spike waves, Spike I, Spike II and Spike III sample waves were determined. The analysis results showed that the ratios of the referred wave and Spike III wave to the referred total energy for IMF1, IMF2, and the residual function exceeded 10%. Furthermore, the energy ratios for IMF1, IMF2, IMF3 and the residual function of Spike I, Spike II to their total energy exceeded 10%. The Pearson correlation coefficients of the IMF3 of the EEG signal without spike waves and Spike I wave, EEG signal without spike waves and Spike II wave, EEG signal without spike waves and Spike III wave, Spike I and II waves, Spike I and III waves, and Spike II and III waves were 0.002, 0.06, 0.01, 0.17, 0.03, and 0.3, respectively. The energy ratios of IMF3 in the δ band to its referred total energy for the EEG signal without spike waves, and of the Spike I, II, and III waves were 4.72, 6.75, 5.41, and 5.55%, respectively. The weighted average frequency of the IMF1, IMF2, and IMF3 of the EEG signal without spike waves was lower than that of the IMF1, IMF2, and IMF3 of the spike waves, respectively. The weighted average magnitude of the IMF3, IMF4, and IMF5 of the EEG signal without spike waves was lower than that of the IMF1, IMF2, and IMF3 of spike waves, respectively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Electroencephalography / methods*
  • Epilepsy / diagnosis*
  • Epilepsy / physiopathology*
  • Humans
  • Signal Processing, Computer-Assisted / instrumentation*