Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers

J Colloid Interface Sci. 2015 Feb 1:439:62-8. doi: 10.1016/j.jcis.2014.10.026. Epub 2014 Oct 24.

Abstract

In this work, the effects of halloysite nanotubes (HNTs) on the visible-light photocatalytic ability of electrospun carbon doped TiO2/HNT (C-TH) nanofibers have been explored. Structural and morphological investigations demonstrate that incorporation of HNTs into anatase C-TH hybrid nanofibers was easily achieved by using sol-gel processing combined with electrospinning approach, thus HNTs could be uniformly embedded in the electrospun nanofibers. The visible-light photocatalytic efficiency of C-TH hybrid on the degradation of methyl blue (MB) was greatly enhanced with the combination of moderate amount of HNTs (8%), which was 23 times higher than that of commercial anatase TiO2. Mechanism of the enhancing effect of HNTs has been explored by analyzing the dual-effect of adsorption and photocatalysis in various amounts of HNTs incorporated C-TiO2 nanofibers. With nanotubular structure and considerable adsorption ability, incorporated HNTs functioned as porogen agent in C-TH nanofibers. This simple incorporation approach increases the specific surface areas of nanofibers, which improves the mass transport of reactant into the nanofibers and the adsorption of visible-light by scattering, meanwhile may suppress the charge recombination and enhance photoinduced charge separation, thus efficiently enhancing visible-light photocatalytic performance of the C-TH hybrid nanofibers.

Keywords: Electrospun TiO(2) nanofibers; Halloysite; Visible-light photocatalyst.