The universe of Hsp90

Biomol Concepts. 2012 Feb;3(1):79-97. doi: 10.1515/bmc.2011.054.

Abstract

Abstract Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Among the ATP-dependent chaperones, heat shock proteins (Hsp90) proteins play a special role. While Hsp90s can interact with unfolded and misfolded proteins, their main (and in eukaryotic cells essential) function appears to involve interactions with a limited number of protein clients at late steps of maturation or in "alter-native" conformations for regulating their stability and activity. Because Hsp90 clients are hubs of diverse signaling networks and participate in nearly every cellular function, Hsp90s interconnect many regulatory circuits and link them to environmental impacts. The availability and activity of Hsp90 may thus influence complex physiological and pathophysiological processes, such as differentiation, development, aging, cancer, neurodegeneration, and infectious diseases. Furthermore, through homeostatic effects on differentiation and development, Hsp90s act as capacitors of phenotypic evolution. In this review, we discuss recent insights in the structure and chaperone cycle of Hsp90s, the mechanisms underlying Hsp90 binding to clients, and potential reasons why client proteins specifically require the assistance of Hsp90s. Moreover, the current views on Hsp90-cochaperone interactions and regulation of Hsp90 proteins via posttranslational modifications are summarized. The second half of this article is devoted to the role of Hsp90 proteins in health and disease, aging, and evolution.