Dynamics of the O + ClO reaction: reactive and vibrational relaxation processes

J Phys Chem A. 2014 Dec 26;118(51):12120-9. doi: 10.1021/jp511498r. Epub 2014 Dec 11.

Abstract

Classical trajectories have been integrated to study the O + ClO reaction, both reactive and vibrational energy transfer processes, for the range of temperatures 100 ≤ T/K ≤ 500 using momentum Gaussian binning. The employed potential energy surface is the recently proposed single-sheeted double many-body expansion potential energy surface for the (2)A" ground-state of ClO2 based on multireference ab initio data. A capture-type regime with a room-temperature rate constant of (17.8 ± 0.5) × 10(-12) cm(3) s(-1) and temperature dependence of k(T/K)/cm(3) s(-1) = 22.4 × 10(-12) × T(-0.81) exp(-39.2/T) has been found. Although the value reported here is half of the experimental and recommended one, tentative explanations are given. Other dynamical attributes are also examined for the title reaction, with state-to-all and state-to-state vibrational relaxation and excitation rate constants reported for temperatures of relevance in stratospheric chemistry.