The MVAD pump: motor stator core loss characterization

ASAIO J. 2015 Mar-Apr;61(2):122-6. doi: 10.1097/MAT.0000000000000180.

Abstract

Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump's motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator's magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator's core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations.

Caution: Investigational device. Limited by United States law to investigational use.

Publication types

  • Evaluation Study

MeSH terms

  • Electric Power Supplies
  • Equipment Design
  • Heart-Assist Devices* / statistics & numerical data
  • Humans
  • Magnetic Fields
  • Magnets
  • Miniaturization
  • Models, Theoretical