A homoleptic trisbidentate Ru(II) complex of a novel bidentate biheteroaromatic ligand based on quinoline and pyrazole groups: structural, electrochemical, photophysical, and computational characterization

Inorg Chem. 2014 Dec 15;53(24):12778-90. doi: 10.1021/ic502432c. Epub 2014 Nov 24.

Abstract

We synthesized a new homoleptic, tris-bidentate complex [Ru(QPzH)3](2+) based on the novel biheteroaromatic, 8-(3-pyrazolyl)-quinoline ligand QPzH. The QPzH ligand was designed to reduce the distortions typically observed in complexes incorporating the 8-quinolinyl group into the ligand framework. This was indeed observed, and was also, as anticipated, found to facilitate the formation of tris-homoleptic Ru(II) complexes; [Ru(QPzH)3](2+) is the first reported tris-homoleptic complex with ligands based on the 8-quinolinyl group. The synthesis can either result in a statistical 3:1 mer/fac ratio of the complex, or, through controlled exposure to light, be tweaked to allow isolation of the pure mer isomer only. X-ray crystallography reveals three nonequivalent ligands, with significantly less strain than other quinoline-based bidentate ligands. The complex exhibits a nearly octahedral coordination geometry but shows large differences in bond lengths between the Ru core and the quinoline and pyrazoles, respectively. The Ru-N(pyrazole) bond distances are ∼2.04 Å, while the corresponding distances for Ru-N(quinoline) are ∼2.12 Å. Structural, photophysical, electrochemical, and theoretical characterization revealed a mer-Ru(II) complex with a low oxidation potential (0.57 V vs ferrocene(0/+)) attributed to the incorporation of the pyrazolyl group, a ground state absorption that is sensitive to the local environment of the complex, and a short-lived (3)MLCT excited state.