Common-path and compact wavefront diagnosis system based on cross grating lateral shearing interferometer

Appl Opt. 2014 Oct 20;53(30):7144-52. doi: 10.1364/AO.53.007144.

Abstract

A common-path and compact wavefront diagnosis system for both continuous and transient wavefronts measurement is proposed based on cross grating lateral shearing interferometer (CGLSI). Derived from the basic CGLSI configuration, this system employs an aplanatic lens to convert the wavefront under test into a convergent beam, which makes it possible for CGLSI to test the wavefront of collimated beams. A geometrical optics model for grating pitch determination and a Fresnel diffraction model for order selection mask design are presented. Then a detailed analysis about the influence of the grating pitch, the distance from the cross grating to the order selection mask and the numerical aperture of the aplanatic lens on the system error is made, and a calibration method is proposed to eliminate the system error. In addition, the differential Zernike polynomials fitting method is introduced for wavefront retrieval. Before our experiment, we have designed several grating pitches and their corresponding order selection mask parameters. In the final comparative experiment with ZYGO interferometer, the wavefront diagnosis system exhibits both high precision and repeatability.