Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetland planted with Phragmites sp. and Typha sp

J Environ Health Sci Eng. 2014 Oct 25;12(1):131. doi: 10.1186/s40201-014-0131-5. eCollection 2014.

Abstract

The purpose of this study is to examine the potential use of anaerobic baffled reactor (ABR) followed by Bio-rack wetland planted with Phragmites sp. and Typha sp. for treating domestic wastewater generated by small communities (751 mg COD/L, 500 SCOD mg/L, 348 mg BOD5/L). Two parallel laboratory-scale models showed that the process planted with Phragmites sp. and Typha sp. are capable of removing COD by 87% & 86%, SCOD by 90% & 88%, BOD5 by 93% & 92%, TSS by 88% & 86%, TN by 79% & 77%, PO4-P by 21% & 14% at an overall HRT of 21 (843 g COD/m(3)/day & 392 g BOD5/m(3)/day) and 27 (622 g COD/m(3)/day & 302 g BOD5/m(3)/day) hours, respectively. Microbial analysis indicated a high reduction in the MPN of total coliform and TVC as high as 99% at the outlet end of the processes. The vegetated system using Phragmites sp. showed significantly greater (p <0.05) pollutant removal efficiencies due to its extensive root and mass growth rate (p <0.05) of the plant compared to Typha sp. The Phragmites sp. indicated a higher relative growth rate (3.92%) than Typha sp. (0.90%). Microorganisms immobilized on the surface of the Bio-rack media (mean TVC: 2.33 × 10(7) cfu/cm(2)) were isolated, identified and observed using scanning electron microscopy (SEM). This study illustrated that the present integrated processes could be an ideal approach for promoting a sustainable decentralization, however, Phragmites sp. would be more efficient rather than Typha sp.

Keywords: Anaerobic baffled reactor; Bio-rack wetland system; Domestic wastewater treatment; Phragmites sp; Typha sp.