Global metabolomic and isobaric tagging capillary liquid chromatography-tandem mass spectrometry approaches for uncovering pathway dysfunction in diabetic mouse aorta

J Proteome Res. 2014 Dec 5;13(12):6121-34. doi: 10.1021/pr501030e. Epub 2014 Nov 13.

Abstract

Despite the prevalence of diabetes and the global health risks it poses, the biochemical pathogenesis of diabetic complications remains poorly understood with few effective therapies. This study employs capillary liquid chromatography (capLC) and tandem mass spectrometry (MS/MS) in conjunction with both global metabolomics and isobaric tags specific to amines and carbonyls to probe aortic metabolic content in diabetic mice with hyperglycemia, hyperlipidemia, hypertension, and stenotic vascular damage. Using these combined techniques, metabolites well-characterized in diabetes as well as novel pathways were investigated. A total of 53,986 features were detected, 719 compounds were identified as having significant fold changes (thresholds ≥ 2 or ≤ 0.5), and 48 metabolic pathways were found to be altered with at least 2 metabolite hits in diabetic samples. Pathways related to carbonyl stress, carbohydrate metabolism, and amino acid metabolism showed the greatest number of metabolite changes. Three novel pathways with previously limited or undescribed roles in diabetic complications--vitamin B6, propanoate, and butanoate metabolism--were also shown to be altered in multiple points along the pathway. These discoveries support the theory that diabetic vascular complications arise from the interplay of a myriad of metabolic pathways in conjunction with oxidative and carbonyl stress, which may provide not only new and much needed biomarkers but also insights into novel therapeutic targets.

Keywords: capillary liquid chromatography; diabetes; diabetic complications; global metabolomics; isobaric tags; metabolic pathway dysfunction; tandem mass spectrometry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amines / metabolism
  • Amino Acids / metabolism
  • Animals
  • Aorta / metabolism*
  • Biomarkers / metabolism
  • Butyrates / metabolism
  • Carbohydrate Metabolism
  • Chromatography, Liquid / methods*
  • Diabetic Angiopathies / metabolism
  • Hyperglycemia / metabolism
  • Isotope Labeling / methods
  • Metabolic Networks and Pathways*
  • Metabolome
  • Metabolomics / methods*
  • Mice, Knockout
  • Propionates / metabolism
  • Tandem Mass Spectrometry / methods*
  • Vitamin B 6 / metabolism

Substances

  • Amines
  • Amino Acids
  • Biomarkers
  • Butyrates
  • Propionates
  • Vitamin B 6