Femtosecond electrons probing currents and atomic structure in nanomaterials

Nat Commun. 2014 Oct 31:5:5292. doi: 10.1038/ncomms6292.

Abstract

The investigation of ultrafast electronic and structural dynamics in low-dimensional systems such as nanowires and two-dimensional materials requires femtosecond probes providing high spatial resolution and strong interaction with small volume samples. Low-energy electrons exhibit large scattering cross-sections and high sensitivity to electric fields, but their pronounced dispersion during propagation in vacuum so far prevented their use as femtosecond probe pulses in time-resolved experiments. Here, employing a laser-triggered point-like source of either divergent or collimated electron wave packets, we developed a hybrid approach for femtosecond point projection microscopy and femtosecond low-energy electron diffraction. We investigate ultrafast electric currents in nanowires with sub-100 femtosecond temporal and few 10 nm spatial resolutions, and demonstrate the potential of our approach for studying structural dynamics in crystalline single-layer materials.

Publication types

  • Research Support, Non-U.S. Gov't