Characterization of structural variants with single molecule and hybrid sequencing approaches

Bioinformatics. 2014 Dec 15;30(24):3458-66. doi: 10.1093/bioinformatics/btu714. Epub 2014 Oct 28.

Abstract

Motivation: Structural variation is common in human and cancer genomes. High-throughput DNA sequencing has enabled genome-scale surveys of structural variation. However, the short reads produced by these technologies limit the study of complex variants, particularly those involving repetitive regions. Recent 'third-generation' sequencing technologies provide single-molecule templates and longer sequencing reads, but at the cost of higher per-nucleotide error rates.

Results: We present MultiBreak-SV, an algorithm to detect structural variants (SVs) from single molecule sequencing data, paired read sequencing data, or a combination of sequencing data from different platforms. We demonstrate that combining low-coverage third-generation data from Pacific Biosciences (PacBio) with high-coverage paired read data is advantageous on simulated chromosomes. We apply MultiBreak-SV to PacBio data from four human fosmids and show that it detects known SVs with high sensitivity and specificity. Finally, we perform a whole-genome analysis on PacBio data from a complete hydatidiform mole cell line and predict 1002 high-probability SVs, over half of which are confirmed by an Illumina-based assembly.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Genomic Structural Variation*
  • Genomics / methods
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Repetitive Sequences, Nucleic Acid
  • Sequence Analysis, DNA / methods*
  • Sequence Deletion