Fluorescent nanohybrid of gold nanoclusters and quantum dots for visual determination of lead ions

ACS Appl Mater Interfaces. 2014 Dec 10;6(23):21461-7. doi: 10.1021/am5064603. Epub 2014 Nov 11.

Abstract

Highly green emissive gold nanoclusters (Au NCs) are synthesized using glutathione as a stabilizing agent and mercaptopropionic acid as a ligand, and the intensity of fluorescence is specifically sensitive to lead ions. We then fabricated a ratiometric fluorescence nanohybrid by covalently linking the green Au NCs to the surface of silica nanoparticles embedded with red quantum dots (QDs) for on-site visual determination of lead ions. The green fluorescence can be selectively quenched by lead ions, whereas the red fluorescence is inert to lead ions as internal reference. The different response of the two emissions results in a continuous fluorescence color change from green to yellow that can be clearly observed by the naked eyes. The nanohybrid sensor exhibits high sensitivity to lead ions with a detection limit of 3.5 nM and has been demonstrated for determination of lead ions in real water samples including tap water, mineral water, groundwater, and seawater. For practical application, we dope the Au NCs in poly(vinyl alcohol) (PVA) film and fabricate fluorescence test strips to directly detect lead ions in water. The PVA-film method has a visual detection limit of 0.1 μM, showing its promising application for on-site identification of lead ions without the need for elaborate equipment.

Keywords: gold nanoclusters; lead ions; nanohybrid fluorescence sensor; poly(vinyl alcohol) film; visual detection.

Publication types

  • Research Support, Non-U.S. Gov't