Non-universality of scaling exponents in quantum Hall transitions

J Phys Condens Matter. 2014 Nov 26;26(47):475801. doi: 10.1088/0953-8984/26/47/475801. Epub 2014 Oct 29.

Abstract

We have investigated experimentally the scaling behaviour of quantum Hall transitions in GaAs/AlGaAs heterostructures of a range of mobility, carrier concentration, and spacer layer width. All three critical scaling exponents γ, κ and p were determined independently for each sample. We measure the localization length exponent to be γ ≈ 2.3, in good agreement with expected predictions from scaling theory, but κ and p are found to possess non-universal values. Results obtained for κ range from κ = 0.16 ± 0.02 to κ = 0.67 ± 0.02, and are found to be Landau level (LL) dependent, whereas p is found to decrease with increasing sample mobility. Our results demonstrate the existence of two transport regimes in the LL conductivity peak; universality is found within the quantum coherent transport regime present in the tails of the conductivity peak, but is absent within the classical transport regime found close to the critical point at the centre of the conductivity peak. We explain these results using a percolation model and show that the critical scaling exponent depends on certain important length scales that correspond to the microscopic description of electron transport in the bulk of a two-dimensional electron system.

Publication types

  • Research Support, Non-U.S. Gov't