Ultrafast excited-state dynamics of 2,4-dimethylpyrrole

J Phys Chem A. 2014 Nov 20;118(46):10909-18. doi: 10.1021/jp508919s. Epub 2014 Nov 7.

Abstract

The dynamics of photoexcited 2,4-dimethylpyrrole (DMP) were studied using time-resolved velocity map imaging spectroscopy over a range of photoexcitation wavelengths (276-238 nm). Two dominant H atom elimination channels were inferred from the time-resolved total kinetic energy release spectra, one which occurs with a time constant of ∼120 fs producing H atoms with high kinetic energies centered around 5000-7000 cm(-1) and a second channel with a time constant of ∼3.5 ps producing H atoms with low kinetic energies centered around 2500-3000 cm(-1). The first of these channels is attributed to direct excitation from the ground electronic state (S0) to the dissociative 1(1)πσ* state (S1) and subsequent N-H bond fission, moderated by a reaction barrier in the N-H stretch coordinate. In contrast to analogous measurements in pyrrole (Roberts et al. Faraday Discuss. 2013, 163, 95-116), the N-H dissociation times are invariant with photoexcitation wavelength, implying a relatively flatter potential in the vertical Franck-Condon region of the 1(1)πσ* state of DMP. The origins of the second channel are less clear-cut, but given the picosecond time constant for this process, we posit that this channel is indirect and is likely a consequence of populating higher-lying electronic states [e.g., 2(1)πσ* (S2)] which, following vibronic coupling into lower-lying intermediary states (namely, S1 or S0), leads to prompt N-H bond fission.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Kinetics
  • Molecular Structure
  • Photochemical Processes
  • Pyrroles / chemistry*
  • Quantum Theory*

Substances

  • 2,4-dimethylpyrrole
  • Pyrroles