Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure

Nucleic Acids Res. 2014 Nov 10;42(20):12585-99. doi: 10.1093/nar/gku965. Epub 2014 Oct 23.

Abstract

Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle / genetics*
  • Cell Nucleus / genetics*
  • Chromosomes, Fungal*
  • Gene Expression Regulation, Fungal*
  • Genome, Fungal
  • Intranuclear Space
  • Schizosaccharomyces / genetics*
  • Terminal Repeat Sequences
  • Transcription, Genetic

Associated data

  • GEO/GSE52287