[Reponses of soil total organic carbon and dissolved organic carbon to simulated nitrogen deposition in temperate typical steppe in Inner Mongolia, China]

Huan Jing Ke Xue. 2014 Aug;35(8):3073-82.
[Article in Chinese]

Abstract

Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the contents, inter-annual variation and profile distribution of soil total organic carbon (TOC) and dissolved organic carbon (DOC) were investigated from May, 2008 to October, 2011 in a temperate typical steppe in Inner Mongolia of China, and the relationship between TOC and DOC was also discussed. The treatments in the manipulative experiment included N additions at rates of 0, 5, 10, and 20 g x (m2 x a)(-1), representing the control (CK), low N (LN), medium N (MN), and high N (HN) treatment, respectively. The results indicated that the concentrations of soil TOC and DOC decreased progressively with soil depth in all cases except for the DOC at 10-20 cm depth in individual years. The increase of N input in typical steppe did not change the vertical distribution of soil TOC and DOC, but reduced the vertical variation of TOC and increased the vertical variation of DOC in the surface soil horizon. In addition, the contents of soil TOC and DOC at 0- 10 cm and 10- 20 cm soil layers changed insignificantly after the continuous increase in anthropogenic N input for four years. The soil organic C density of 0-20 cm soil layer for different N treatment levels varied between 3.9 kg x m(-2) and 5.6 kg x m(-2), and the soil organic C densities of fertilized treatments in the first two years were similar to or slightly lower than those of CK, while in the following two years, the increase in N deposition gradually played a positive role in increasing soil organic C density, but the differences in soil TOC and DOC contents between CK and fertilized plots were not significant (P > 0.05). The ratio of soil DOC to TOC (DOC/TOC) varied from 0.32% to 1.09%. The increase in N deposition generally lowered the proportion of DOC in soil TOC, which was conducive to the accumulation of soil organic C. The change of soil DOC was positively correlated with that of TOC (P < 0.01). The temporal variations of soil DOC in different N treatments were all far greater than those of TOC, and the soil DOC was the important sensitive indicator for predicting and evaluating the response of soil C pool to the change in atmospheric N deposition in the temperate grassland ecosystem.

MeSH terms

  • Atmosphere / chemistry
  • Carbon / chemistry*
  • China
  • Grassland*
  • Nitrogen / chemistry*
  • Soil / chemistry*

Substances

  • Soil
  • Carbon
  • Nitrogen