Free-form deformation using lower-order B-spline for nonrigid image registration

Med Image Comput Comput Assist Interv. 2014;17(Pt 1):194-201. doi: 10.1007/978-3-319-10404-1_25.

Abstract

In traditional free-form deformation (FFD) based registration, a B-spline basis function is commonly utilized to build the transformation model. As the B-spline order increases, the corresponding B-spline function becomes smoother. However, the higher-order B-spline has a larger support region, which means higher computational cost. For a given D-dimensional nth-order B-spline, an mth-order B-spline where (m < or = n) has (m +1/n + 1)D times lower computational complexity. Generally, the third-order B-spline is regarded as keeping a good balance between smoothness and computation time. A lower-order function is seldom used to construct the deformation field for registration since it is less smooth. In this research, we investigated whether lower-order B-spline functions can be utilized for efficient registration, by using a novel stochastic perturbation technique in combination with a postponed smoothing technique to higher B-spline order. Experiments were performed with 3D lung and brain scans, demonstrating that the lower-order B-spline FFD in combination with the proposed perturbation and postponed smoothing techniques even results in better accuracy and smoothness than the traditional third-order B-spline registration, while substantially reducing computational costs.

MeSH terms

  • Algorithms*
  • Brain / anatomy & histology*
  • Computer Simulation
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Models, Statistical
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*