Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes

PLoS One. 2014 Oct 16;9(10):e110200. doi: 10.1371/journal.pone.0110200. eCollection 2014.

Abstract

Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate Change*
  • Ecosystem
  • Europe
  • Forests*
  • Hydrology*
  • Models, Statistical*
  • Rivers*
  • Spatio-Temporal Analysis

Grants and funding

This work was supported by the IWRM Era-Net Funding Initiative through the RIPFLOW project (references ERAC-CT-2005-026025, ERA-IWRM/0001/2008, CGL2008-03076-E/BTE), http://www.old.iwrm-net.eu/spip.php. Rui Rivaes benefited from a PhD grant sponsored by UTL - Universidade Técnica de Lisboa (www.utl.pt) and Patricia María Rodriguez-González benefited from a post-doctoral grant sponsored by FCT - Fundação para a Ciência e Tecnologia (www.fct.pt) (SFRH/BPD/47140/2008). The Spanish team would like to thank the Spanish Ministry of the Economy and Competitiveness the support provided through the SCARCE project (Consolider-Ingenio 2010 CSD2009-00065). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Environmental Consulting Klagenfurt provided support in the form of salaries for authors EP and GE, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.