Surface imaging of metallic material fractures using optical coherence tomography

Appl Opt. 2014 Sep 10;53(26):5912-6. doi: 10.1364/AO.53.005912.

Abstract

We demonstrate the capability of optical coherence tomography (OCT) to perform topography of metallic surfaces after being subjected to ductile or brittle fracturing. Two steel samples, OL 37 and OL 52, and an antifriction Sn-Sb-Cu alloy were analyzed. Using an in-house-built swept source OCT system, height profiles were generated for the surfaces of the two samples. Based on such profiles, it can be concluded that the first two samples were subjected to ductile fracture, while the third one was subjected to brittle fracture. The OCT potential for assessing the surface state of materials after fracture was evaluated by comparing OCT images with images generated using an established method for such investigations, scanning electron microscopy (SEM). Analysis of cause of fracture is essential in response to damage of machinery parts during various accidents. Currently the analysis is performed using SEM, on samples removed from the metallic parts, while OCT would allow in situ imaging using mobile units. To the best of our knowledge, this is the first time that the OCT capability to replace SEM has been demonstrated. SEM is a more costly and time-consuming method to use in the investigation of surfaces of microstructures of metallic materials.