Fluorescence lifetime based characterization of active and tunable plasmonic nanostructures

Opt Express. 2014 Aug 25;22(17):20720-6. doi: 10.1364/OE.22.020720.

Abstract

We report a non-contact method that utilizes fluorescence lifetime (FL) to characterize morphological changes of a tunable plasmonic nanostructure with nanoscale accuracy. The key component of the plasmonic nanostructure is pH-responsive polyelectrolyte multilayers (PEMs), which serve as a dynamically tunable "spacer" layer that separates the plasmonic structure and the fluorescent materials. The validity of our method is confirmed through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. Applying the FL-based approach, we find that a monolayer polycation film responds to pH changes with significantly less hysteresis than a thicker multilayer film with polyelectrolytes of both charges. Additionally, we characterize an active and tunable plasmonic nanostructure composed of self-assembled fluorescent dye (Texas Red), pH-sensitive PEMs, and gold nanospheres adsorbed on the PEM surface. Our results point towards the possibility of using stimulus-sensitive polymers to construct active and tunable plasmonic nanodevices.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.