Rationally designed axially chiral diarylethene switches with high helical twisting power

Chemistry. 2014 Dec 1;20(49):16286-92. doi: 10.1002/chem.201403705. Epub 2014 Oct 14.

Abstract

Three rationally designed axially chiral diarylethene switches were synthesized and their application as chiral dopants for phototunable cholesteric liquid crystal devices was investigated. Design of these molecules was based on the combination of photochromic dithienylcyclopentene core with bridged binaphthyl units as chiral precursors. Aromatic groups were introduced to the molecules at 6,6'-positions of binaphthyls through a Suzuki-Miyaura coupling reaction. Their helical twisting powers (HTPs) are significantly higher than those of the known chiral diarylethenes reported as chiral dopants so far. Photocyclization of these molecules upon light irradiation brought out dramatic variation in HTPs between different states. The primary colors, red, green, and blue, were obtained in reflection on light irradiation and with thermal stability. Moreover, a multi-switchable photodisplay was demonstrated using one of these chiral molecular switches.

Keywords: axial chirality; liquid crystals; molecular switches; photochromism; reflection color.