Distribution and deposition of organic fouling on the microfiltration membrane evaluated by high-frequency ultrasound

J Memb Sci. 2013 Apr 15:433:100-111. doi: 10.1016/j.memsci.2013.01.020.

Abstract

A 50 MHz high-frequency ultrasound and analysis method were developed to further improve the in situ assessment of deposition and distribution of organic fouling on the polyvinylidene fluoride (PVDF) membranes. Measurements of fouling depositions were performed from PVDF membranes filtrated with aqueous humic acid solutions (HAS) of 2 and 4 ppm concentrations in a flat-sheet module. Ultrasound signals reflected from the PVDF membranes, following filtrations at various durations including 0, 5, 15, 30, 60, and 100 min, were acquired. The thickness and distribution of fouling estimated and assessed by peak-to-peak echo voltage (Vpp) and C-mode images were found to be non-homogeneously deposited on the membranes. Following the filtrations with 2 and 4 ppm HAS for 100 min, the corresponding thickness of fouling deposition increased from 1.81±9 to 2.4571.57 mm, respectively; those average Vpp decreased from 2.05±07 to 1.13±16 V and from 2.11±08 to 0.94±15 V. These results demonstrated that the deposition and distribution of organic fouling could be sensitively and rapidly evaluated by high-frequency ultrasound image incorporated with the analysis method.

Keywords: High-frequency ultrasound; Humic acid; Membrane fouling; Microfiltration.