Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production

Sci Rep. 2014 Oct 9:4:6567. doi: 10.1038/srep06567.

Abstract

Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, 'Leaf Star', with superior lodging resistance and a gh phenotype similar to one of its parents, 'Chugoku 117'. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohol Oxidoreductases / genetics*
  • Base Sequence
  • Biomass
  • Breeding
  • Cell Wall / metabolism*
  • Chromosome Mapping
  • Crops, Agricultural / classification
  • Crops, Agricultural / genetics
  • Lignin / biosynthesis*
  • Lignin / genetics
  • Oryza / classification
  • Oryza / genetics*
  • Quantitative Trait Loci
  • Sequence Analysis, DNA

Substances

  • Lignin
  • Alcohol Oxidoreductases
  • cinnamyl alcohol dehydrogenase