Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

Cancer Prev Res (Phila). 2014 Dec;7(12):1219-27. doi: 10.1158/1940-6207.CAPR-14-0154. Epub 2014 Oct 7.

Abstract

Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10'-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9',10'-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation, and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 expression is important using BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs. 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs. 20%) and multiplicity (58% vs. 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic proinflammatory signaling (phosphorylation of NK-κB p65 and STAT3; IL6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ER(UPR)), through decreasing ER(UPR)-mediated protein kinase RNA-activated like kinase-eukaryotic initiation factor 2α activation, and inositol requiring 1α-X-box-binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals, including Met mRNA, β-catenin protein, and mTOR complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anticarcinogenic Agents / administration & dosage*
  • Blotting, Western
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Carcinoma, Hepatocellular / prevention & control*
  • Carotenoids / administration & dosage*
  • Cell Transformation, Neoplastic
  • Diet, High-Fat*
  • Dietary Supplements
  • Dioxygenases / physiology*
  • Endoplasmic Reticulum Stress / drug effects
  • Humans
  • Immunoenzyme Techniques
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Liver Neoplasms / prevention & control*
  • Lycopene
  • Male
  • Mice
  • Mice, Knockout
  • Phosphorylation / drug effects
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction
  • Tumor Cells, Cultured

Substances

  • Anticarcinogenic Agents
  • RNA, Messenger
  • Carotenoids
  • Dioxygenases
  • Bco2 protein, mouse
  • Lycopene