Effect of water sorption on the electronic conductivity of porous polymer electrolyte membrane fuel cell catalyst layers

ACS Appl Mater Interfaces. 2014 Nov 12;6(21):18609-18. doi: 10.1021/am503509j. Epub 2014 Oct 16.

Abstract

A method is described for measuring the effective electronic conductivity of porous fuel cell catalyst layers (CLs) as a function of relative humidity (RH). Four formulations of CLs with different carbon black (CB) contents and ionomer equivalent weights (EWs) were tested. The van der Pauw method was used to measure the sheet resistance (RS), which increased with RH for all samples. The increase was attributed to ionomer swelling upon water uptake, which affects the connectivity of CB aggregates. Greater increases in RS were observed for samples with lower EW, which uptake more water on a mass basis per mass ionomer. Transient RS measurements were taken during absorption and desorption, and the resistance kinetics were fit using a double exponential decay model. No hysteresis was observed, and the absorption and desorption kinetics were virtually symmetric. Thickness measurements were attempted at different RHs, but no discernible changes were observed. This finding led to the conclusion that the conducting Pt/C volume fraction does not change with RH, which suggests that effective medium theory models that depend on volume fraction alone cannot explain the reduction in conductivity with RH. The merits of percolation-based models were discussed. Optical micrographs revealed an extensive network of "mud cracks" in some samples. The influence of water sorption on CL conductivity is primarily explained by ionomer swelling, and its effects on the quantity and quality of interaggregate contacts were discussed.

Keywords: aggregate; composite; ionomer; kinetics; microstructure; percolation; swelling; tunneling.

Publication types

  • Research Support, Non-U.S. Gov't