Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate

Appl Environ Microbiol. 2014 Dec;80(24):7592-603. doi: 10.1128/AEM.02385-14. Epub 2014 Sep 26.

Abstract

The betaproteobacteria "Aromatoleum aromaticum" pCyN1 and "Thauera" sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted "A. aromaticum" pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with "Thauera" sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. "A. aromaticum" pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of "Thauera" sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Bacterial Proteins / metabolism
  • Betaproteobacteria / enzymology
  • Betaproteobacteria / metabolism*
  • Cymenes
  • Denitrification
  • Fumarates / metabolism*
  • Hydroxylation
  • Monoterpenes / metabolism*
  • Oxidation-Reduction
  • Oxidoreductases / metabolism
  • Succinic Acid / metabolism
  • Thauera / enzymology
  • Thauera / metabolism

Substances

  • Bacterial Proteins
  • Cymenes
  • Fumarates
  • Monoterpenes
  • 4-cymene
  • Succinic Acid
  • Oxidoreductases