Transcriptome profiling of expression changes during neuronal death by RNA-Seq

Exp Biol Med (Maywood). 2015 Feb;240(2):242-51. doi: 10.1177/1535370214551688. Epub 2014 Sep 25.

Abstract

The molecular mechanisms underlying neuronal death are poorly understood. One of the most widely used models to study neuronal death are cultured cerebellar granule neurons (CGNs) which undergo apoptosis when switched from a medium containing depolarizing levels of potassium (HK) to a medium with low non-depolarizing levels of potassium (LK). Previously, other labs have used DNA microarray analysis to characterize gene expression changes in LK-treated CGNs. However, microarray analysis is only capable of measuring the status of known transcripts, and expression of low-abundance mRNAs is often not detected by the hybridization-based approach. We have used RNA-sequencing to conduct a more detailed and comprehensive analysis of gene expression changes in CGNs induced to die by LK treatment. RNA-seq investigates the status of both known transcripts as well as exploring new ones and is substantially more sensitive than the microarray approach. We have found that the expression of 4334 genes is significantly altered in LK-treated CGNs with 2199 being up-regulated while 2135 are down-regulated. Genes functioning in cell death and survival regulation, cell growth and proliferation and molecular transport were most affected by LK treatment. Further, a large number of genes involved in nervous system development and function were also deregulated. Analysis of signaling pathways that were affected in LK-induced death included but were not limited to mitochondrial dysfunction and oxidative phosphorylation, consistent with a number of studies showing perturbations of these pathways in neurodegenerative disorders. Thus, our study identifies a large number of new genes that are affected during the process of neuronal death. While a majority of these changes may reflect consequences of the induction of neuronal death, many of the genes that we have identified are likely to be critical and potentially novel mediators of neuronal death, including death associated with neurodegenerative disease.

Keywords: Cerebellar granule neurons; RNA-sequencing; apoptosis; potassium withdrawal.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Cell Death
  • Cerebellum / metabolism*
  • Cerebellum / pathology
  • Gene Expression Regulation*
  • Mitochondria / metabolism
  • Mitochondria / pathology
  • Neurodegenerative Diseases / genetics
  • Neurodegenerative Diseases / metabolism*
  • Neurodegenerative Diseases / pathology
  • Neurons / metabolism*
  • Neurons / pathology
  • Rats
  • Sequence Analysis, RNA*
  • Transcriptome*

Substances

  • Biomarkers