A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia

PLoS One. 2014 Sep 24;9(9):e107867. doi: 10.1371/journal.pone.0107867. eCollection 2014.

Abstract

Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)-PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ataxia / complications
  • Ataxia / genetics*
  • Ataxia / pathology
  • Atrophy / complications
  • Atrophy / genetics*
  • Atrophy / pathology
  • Cerebellum / metabolism
  • Cerebellum / pathology*
  • Mice, Inbred C57BL
  • Mutation
  • Nerve Tissue Proteins / analysis
  • Protein Precursors / analysis
  • Purkinje Cells / metabolism
  • Purkinje Cells / pathology
  • Receptors, Glutamate / analysis
  • Receptors, Glutamate / genetics*

Substances

  • Cbln1 protein, mouse
  • Nerve Tissue Proteins
  • Protein Precursors
  • Receptors, Glutamate
  • glutamate receptor delta 2

Grants and funding

This study was supported by Grant-in-Aid for Scientific Research: No. 19590235 and 21590264 from the Japan Society for the Promotion of Science and the PRESTO Program from Japan Science and Technology Agency (JST). This work was also supported in part by "Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan" at the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University (Handai Multi-Functional Nano-Foundry). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.