Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction

ACS Nano. 2014 Oct 28;8(10):10363-71. doi: 10.1021/nn5036894. Epub 2014 Sep 26.

Abstract

The oxygen reduction reaction (ORR) on the cathode of a polymer electrolyte fuel cell requires the use of a catalyst based on Pt, one of the most expensive metals on the earth. A number of strategies, including optimization of shape or facet, formation of alloys with other metals, and incorporation of a different metal into the core, have been investigated to enhance the activity of a Pt-based catalyst and thus reduce the loading of Pt. This article reports the synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward ORR. The octahedra with an edge length of 8 nm were obtained by directly depositing thin, conformal shells of a Pt-Ni alloy on Pd octahedra of 6 nm in edge length. The key to the success of this synthesis is the use of an amphiphilic solvent to ensure good compatibility between the solvents typically used for the syntheses of Pd and Pt-Ni nanocrystals. The core-shell structure was confirmed by a number of techniques, including scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy mapping, in situ X-ray diffraction under H2 and He, and electrochemical measurements. Relative to the state-of-the-art Pt/C catalyst, the Pd@Pt-Ni/C catalyst showed mass and specific ORR activities enhanced by 12.5- and 14-fold, respectively. The formation of a core-shell structure helped increase the electroactive surface area in terms of Pt and thus the mass activity. During an accelerated durability test, the mass activity of the Pd@Pt-Ni/C catalyst only dropped by 1.7% after 10,000 cycles.

Keywords: core−shell nanocrystal; oxygen reduction; platinum catalyst; polymer electrolyte fuel cell.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.