Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation

Acta Neurochir (Wien). 2014 Dec;156(12):2295-302. doi: 10.1007/s00701-014-2236-0. Epub 2014 Sep 24.

Abstract

Background: Resting-state functional magnetic resonance imaging (R-fMRI) is a promising tool in clinical application, especially in presurgical mapping for neurosurgery. This study aimed to investigate the sensitivity and specificity of R-fMRI in the localization of hand motor area in patients with brain tumors validated by direct cortical stimulation (DCS). We also compared this technique to task-based blood oxygenation level-dependent (BOLD) fMRI (T-fMRI).

Methods: R-fMRI and T-fMRI were acquired from 17 patients with brain tumors. The cortex sites of the hand motor area were recorded by DCS. Site-by-site comparisons between R-fMRI/T-fMRI and DCS were performed to calculate R-fMRI and T-fMRI sensitivity and specificity using DCS as a "gold standard". R-fMRI and T-fMRI performances were compared statistically

Results: A total of 609 cortex sites were tested with DCS and compared with R-fMRI findings in 17 patients. For hand motor area localization, R-fMRI sensitivity and specificity were 90.91 and 89.41 %, respectively. Given that two subjects could not comply with T-fMRI, 520 DCS sites were compared with T-fMRI findings in 15 patients. The sensitivity and specificity of T-fMRI were 78.57 and 84.76 %, respectively. In the 15 patients who successfully underwent both R-fMRI and T-fMRI, there was no statistical difference in sensitivity or specificity between the two methods (p = 0.3198 and p = 0.1431, respectively)

Conclusions: R-fMRI sensitivity and specificity are high for localizing hand motor area and even equivalent or slightly higher compared with T-fMRI. Given its convenience for patients, R-fMRI is a promising substitute for T-fMRI for presurgical mapping.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Adult
  • Brain Mapping / methods*
  • Brain Neoplasms / diagnosis
  • Deep Brain Stimulation
  • Female
  • Glioma / diagnosis
  • Hand / innervation*
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Motor Cortex / physiopathology*
  • Sensitivity and Specificity