[Structural changes of aged biochar and the influence on phenanthrene adsorption]

Huan Jing Ke Xue. 2014 Jul;35(7):2604-11.
[Article in Chinese]

Abstract

Biochars prepared by pyrolysis of rice husk at 350 degrees C and 550 degrees C were incubated in the lucifugal thermostat for 300 d. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Scanning Electron Microscopy (SEM), and Nuclear Magnetic Resonance (NMR) techniques were applied to explore the structural change before and after incubation. It was found that the oxygen content was increased after incubation, suggesting the formation of oxygen-containing functional groups. Incubation of the biochars also enhanced their nonlinear adsorption of phenanthrene. Structural change subjected to incubation was in fact affected by the pyrolysis temperatures at which the biochars were synthesized. Increase of polarity and decrease of aromaticity were found for biochars prepared at 350 degrees C. In contrast, incubation of biochars prepared at 550 degrees C resulted in increased aliphatic contents and aromaticity, as well as decrease of carboxyl group. The adsorption capacity of phenanthrene predicted by Langmuir model was 3.57 and 2.35 mg x g(-1) for new and aged biochar with lower pyrolysis temperature, respectively. It was assumed that change of the surface structure of the biochars due to aging inhibited the adsorption. On the contrary, aging of biochares prepared at 550 degrees C resulted in enhanced adsorption capacity of phenanthrene from 0.42 to 4.17 mg x (-1), which was probably correlated to the partition effect due to enhanced aromaticity. The data obtained in this research suggested that aging of biochars potentially affected the fate of the pollutants in environment.

MeSH terms

  • Adsorption
  • Charcoal / chemistry*
  • Incineration
  • Oxygen / chemistry
  • Phenanthrenes / chemistry*
  • Spectroscopy, Fourier Transform Infrared
  • Temperature

Substances

  • Phenanthrenes
  • biochar
  • Charcoal
  • phenanthrene
  • Oxygen