Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin oil

Indoor Air. 2015 Aug;25(4):405-14. doi: 10.1111/ina.12159. Epub 2014 Oct 24.

Abstract

To better understand methamphetamine exposure and risk for occupants of former residential clandestine methamphetamine laboratories, we measured the dynamic accumulation of methamphetamine in skin oil, cotton and polyester (PE) clothing, upholstery, and toy fabric (substrates) exposed to 15-30 ppb (91-183 μg/m(3)) neutral methamphetamine in air for up to 60 days. The average equilibrium partition coefficients at 30% RH, in units of μg of methamphetamine per gram of substrate per ppb, are 3.0 ± 0.2 for a PE baby blanket, 5.6 ± 3.5 for a PE fabric toy, 3.7 ± 0.2 for a PE shirt, 18.3 ± 8.0 for a PE/cotton upholstery fabric, and 1200 ± 570 in skin oil. The partition coefficients at 60% RH are 4.5 ± 0.4, 5.2 ± 2.1, 4.5 ± 0.6, 36.1 ± 3.6, and 1600 ± 1100 μg/(g ppb), respectively. There was no difference in the partition coefficient for a clean and skin-oil-soiled cotton shirt [15.3 ± 2.1 μg/(g ppb) @ 42 days]. Partition coefficients for skin oil may be sensitive to composition. 'Mouthing' of cloth is predicted to be the dominant exposure pathway [60 μg/(kg body weight*ppb)] for a toddler in former meth lab, and indoor air concentrations would have to be very low (0.001 ppb) to meet the recommended reference dose for children.

Practical implications: Gas-phase methamphetamine transfers to and accumulates on clothing, toys and other fabrics significantly increases risk of ingestion of methamphetamine. Current remediation methods should consider measurement of postremediation gas-phase air concentrations of methamphetamine in addition to surface wipe samples.

Keywords: Adsorption; Exposure; Fabrics; Methamphetamine; Skin oil; Toys.

MeSH terms

  • Air Pollutants / analysis*
  • Environmental Exposure / analysis*
  • Humans
  • Methamphetamine / analysis*
  • Methamphetamine / chemistry
  • Skin Absorption*
  • Textiles / analysis*

Substances

  • Air Pollutants
  • Methamphetamine