Characterization and proteomic analysis of the Pseudomonas sp. HK-6 xenB knockout mutant under RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) stress

Curr Microbiol. 2015 Jan;70(1):119-27. doi: 10.1007/s00284-014-0688-3. Epub 2014 Sep 20.

Abstract

Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 10(2)-10(4)-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Gene Knockout Techniques
  • Molecular Sequence Data
  • Oxidoreductases / genetics*
  • Oxidoreductases / metabolism
  • Proteome / chemistry*
  • Proteome / genetics
  • Proteome / metabolism
  • Proteomics
  • Pseudomonas / chemistry
  • Pseudomonas / enzymology*
  • Pseudomonas / genetics
  • Pseudomonas / metabolism
  • Sequence Deletion*
  • Triazines / metabolism*

Substances

  • Bacterial Proteins
  • Proteome
  • Triazines
  • Oxidoreductases
  • cyclonite