High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping

J Am Chem Soc. 2014 Oct 1;136(39):13902-8. doi: 10.1021/ja507945h. Epub 2014 Sep 19.

Abstract

We report a greatly enhanced thermoelectric performance in a BiCuSeO system, realized by improving carrier mobility through modulation doping. The heterostructures of the modulation doped sample make charge carriers transport preferentially in the low carrier concentration area, which increases carrier mobility by a factor of 2 while maintaining the carrier concentration similar to that in the uniformly doped sample. The improved electrical conductivity and retained Seebeck coefficient synergistically lead to a broad, high power factor ranging from 5 to 10 μW cm(-1) K(-2). Coupling the extraordinarily high power factor with the extremely low thermal conductivity of ∼0.25 W m(-1) K(-1) at 923 K, a high ZT ≈ 1.4 is achieved in a BiCuSeO system.