Protein dynamics via computational microscope

World J Methodol. 2012 Dec 26;2(6):42-9. doi: 10.5662/wjm.v2.i6.42.

Abstract

The purpose of this overview is to provide a concise introduction to the methodology and current advances in molecular dynamics (MD) simulations. MD simulations emerged as a powerful and popular tool to study dynamic behavior of proteins and macromolecule complexes at the atomic resolution. This approach can extend static structural data, such as X-ray crystallography, into dynamic domains with realistic timescales (up to millisecond) and high precision, therefore becoming a veritable computational microscope. This perspective covers current advances and methodology in the simulation of protein folding and drug design as illustrated by several important published examples. Overall, recent progress in the simulation field points to the direction that MD will have significant impact on molecular biology and pharmaceutical science.

Keywords: Computer simulations; Force field; Molecular Dynamics; Protein folding; X-ray crystallography.

Publication types

  • Review