Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle

J Dairy Sci. 2014 Nov;97(11):7115-32. doi: 10.3168/jds.2014-8268. Epub 2014 Sep 11.

Abstract

Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis-11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI)=23.39 + 9.74 × C16:0-iso - 1.06 × trans-10+11 C18:1 - 1.75 × cis-9,12 C18:2 (R(2) = 0.54), and CH4 (g/kg of FPCM) = 21.13 - 1.38 × C4:0 + 8.53 × C16:0-iso - 0.22 × cis-9 C18:1 - 0.59 × trans-10+11 C18:1 (R(2) = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk.

Keywords: dairy cattle; meta-analysis; methane; milk fatty acid profile.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Cattle / metabolism*
  • Diet / veterinary
  • Dietary Supplements / analysis
  • Fatty Acids / chemistry
  • Fatty Acids / metabolism*
  • Female
  • Lactation
  • Methane / metabolism*
  • Milk / chemistry*
  • Models, Biological

Substances

  • Fatty Acids
  • Methane