Radiolabeled probes targeting hypoxia-inducible factor-1-active tumor microenvironments

ScientificWorldJournal. 2014:2014:165461. doi: 10.1155/2014/165461. Epub 2014 Aug 18.

Abstract

Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α), which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of (18)F-FDG or (18)F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

Publication types

  • Review

MeSH terms

  • Animals
  • Gene Expression
  • Genes, Reporter
  • Humans
  • Hypoxia-Inducible Factor 1 / chemistry
  • Hypoxia-Inducible Factor 1 / genetics
  • Hypoxia-Inducible Factor 1 / metabolism*
  • Molecular Imaging
  • Molecular Probes / metabolism*
  • Neoplasms / diagnosis
  • Neoplasms / metabolism*
  • Oxygen / metabolism
  • Positron-Emission Tomography
  • Radiopharmaceuticals / metabolism*
  • Tumor Microenvironment* / genetics

Substances

  • Hypoxia-Inducible Factor 1
  • Molecular Probes
  • Radiopharmaceuticals
  • Oxygen