Simulation of vertical concentration gradient of influenza viruses in dust resuspended by walking

Indoor Air. 2015 Aug;25(4):428-40. doi: 10.1111/ina.12156. Epub 2014 Oct 3.

Abstract

Particles are resuspended from the floor by walking and are subject to turbulent transport in the human aerodynamic wake. These processes may generate a vertical concentration gradient of particles. To estimate the magnitude of turbulence generated by walking, we measured the velocity field in the wake from floor to ceiling at 10-cm intervals with a sonic anemometer. The resulting eddy diffusion coefficients varied between 0.06 and 0.20 m(2) /s and were maximal at ~0.75-1 m above the floor, approximately the height of the swinging hand. We applied the eddy diffusion coefficients in an atmospheric transport model to predict concentrations of resuspended influenza virus as a function of the carrier particle size, height in the room, and relative humidity, which affects the resuspension rate coefficient and virus viability. Results indicated that the concentration of resuspended viruses at 1 m above the floor was up to 40% higher than at 2 m, depending on particle size. For exposure to total resuspended viruses, the difference at 1 vs. 2 m was 11-14%. It is possible that shorter people are exposed to higher concentrations of resuspended dust, including pathogens, although experimental evidence is needed to verify this proposition.

Practical implications: Forces generated by walking can resuspend particles from the floor and create higher concentrations close to the floor and lower concentrations above it. These particles may include pathogens, such as the influenza virus, that were previously emitted into the air by an infected individual and that settled to the ground. Due to particle resuspension and turbulent transport, it is possible that shorter people are exposed to higher concentrations of particles, including certain pathogens, than are taller people. This work could be used in support of epidemiological investigations into the incidence of influenza as a function of a person’s height and to guide the design of more effective control strategies to reduce transmission of influenza.

Keywords: Eddy diffusivity; Height; Indoor; Influenza; Virus; Walking.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants*
  • Computer Simulation
  • Dust
  • Humans
  • Models, Theoretical*
  • Orthomyxoviridae*
  • Walking

Substances

  • Air Pollutants
  • Dust