High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas

Nano Lett. 2014 Oct 8;14(10):5517-23. doi: 10.1021/nl501850m. Epub 2014 Sep 10.

Abstract

We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics.

Keywords: Aluminum; Electron Energy Loss Spectroscopy; Losses; Multipoles; Plasmonics; Q Factor.

Publication types

  • Research Support, Non-U.S. Gov't