5-Hydroxymethylfurfural from wine-processed Fructus corni inhibits hippocampal neuron apoptosis

Neural Regen Res. 2013 Oct 5;8(28):2605-14. doi: 10.3969/j.issn.1673-5374.2013.28.002.

Abstract

Previous studies have shown that 5-hydroxymethylfurfural, a compound extracted from wine-processed Fructus corni, has a protective effect on hippocampal neurons. The present study was designed to explore the related mechanisms. Our study revealed that high and medium doses (10, 1 μmol/L) of 5-hydroxymethylfurfural could improve the morphology of H2O2-treated rat hippocampal neurons as revealed by inverted phase-contrast microscopy and transmission electron microscopy. MTT results showed that incubation with high and medium doses of 5-hydroxymethylfurfural caused a significant increase in the viability of neuronal cells injured by H2O2. Flow cytometry assays firmed that H2O2 could induce cell apoptosis, while high and medium doses of 5-hydroxymethylfurfural had a visible protective effect on apoptotic rat hippocampal neurons. Real-time PCR and western blot analysis showed that high and medium doses of 5-hydroxymethylfurfural prevented H2O2-induced up-regulation of p53, Bax and caspase-3 and an-tagonized the down-regulation of Bcl-2 induced by H2O2 treatment. These results suggested that 5-hydroxymethylfurfural could inhibit apoptosis of cultured rat hippocampal neurons injured by H2O2 via increase in Bcl-2 levels and decrease in p53, Bax and caspase-3 protein expression levels.

Keywords: 5-hydroxymethylfurfural; Fructus corni; apoptosis; grants-supported paper; hippocampus; neural regeneration; neurodegenerative disease; neuron; neuroregeneration; oxidative stress; traditional Chinese medicine.