Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors

ACS Nano. 2014 Oct 28;8(10):10471-9. doi: 10.1021/nn5038493. Epub 2014 Sep 15.

Abstract

The largest applications of high-performance graphene will likely be realized when combined with ubiquitous Si very large scale integrated (VLSI) technology, affording a new portfolio of "back end of the line" devices including graphene radio frequency transistors, heat and transparent conductors, interconnects, mechanical actuators, sensors, and optical devices. To this end, we investigate the scalable growth of polycrystalline graphene through chemical vapor deposition (CVD) and its integration with Si VLSI technology. The large-area Raman mapping on CVD polycrystalline graphene on 150 and 300 mm wafers reveals >95% monolayer uniformity with negligible defects. About 26,000 graphene field-effect transistors were realized, and statistical evaluation indicates a device yield of ∼ 74% is achieved, 20% higher than previous reports. About 18% of devices show mobility of >3000 cm(2)/(V s), more than 3 times higher than prior results obtained over the same range from CVD polycrystalline graphene. The peak mobility observed here is ∼ 40% higher than the peak mobility values reported for single-crystalline graphene, a major advancement for polycrystalline graphene that can be readily manufactured. Intrinsic graphene features such as soft current saturation and three-region output characteristics at high field have also been observed on wafer-scale CVD graphene on which frequency doubler and amplifiers are demonstrated as well. Our growth and transport results on scalable CVD graphene have enabled 300 mm synthesis instrumentation that is now commercially available.

Keywords: CVD; analog applications; device performance statistics; field-effect transistors; mobility; polycrystalline graphene; wafer-scale integration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.